What Should We Do when Our Ideas of Fairness Conflict?

Author:

Raghavan Manish1

Affiliation:

1. MIT Sloan School of Management and Department of Electrical Engineering and Computer Science, Cambridge, MA, USA

Abstract

Standards for fair decision making could help us develop algorithms that comport with our consensus views; however, algorithmic fairness has its limits.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference38 articles.

1. Abebe , R. et al. Roles for computing in social change . In Proceedings of the Conf. on Fairness, Accountability, and Transparency ( 2020 ), 252--260. Abebe, R. et al. Roles for computing in social change. In Proceedings of the Conf. on Fairness, Accountability, and Transparency (2020), 252--260.

2. Angwin , J. and Larson , J . Bias in criminal risk scores is mathematically inevitable, researchers say. Ethics of Data and Analytics , Auerbach Publications ( 2016 ), 265--267. Angwin, J. and Larson, J. Bias in criminal risk scores is mathematically inevitable, researchers say. Ethics of Data and Analytics, Auerbach Publications (2016), 265--267.

3. Angwin , J. , Larson , J. , Mattu , S. and Kirchner , L . Machine bias. Ethics of Data and Analytics , Auerbach Publications ( 2016 ), 254--264. Angwin, J., Larson, J., Mattu, S. and Kirchner, L. Machine bias. Ethics of Data and Analytics, Auerbach Publications (2016), 254--264.

4. Barabas , C. et al. Interventions over predictions: Reframing the ethical debate for actuarial risk assessment . In Proceedings of the Conf. on Fairness, Accountability, and Transparency ( 2018 ), 62--76. Barabas, C. et al. Interventions over predictions: Reframing the ethical debate for actuarial risk assessment. In Proceedings of the Conf. on Fairness, Accountability, and Transparency (2018), 62--76.

5. Barocas S. Hardt M. and Narayanan A. Fairness and Machine Learning (2019); http://www.fairmlbook.org. Barocas S. Hardt M. and Narayanan A. Fairness and Machine Learning (2019); http://www.fairmlbook.org.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implications of causality in artificial intelligence;Frontiers in Artificial Intelligence;2024-08-21

2. Algorithmic Fairness in Performative Policy Learning: Escaping the Impossibility of Group Fairness;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

3. Exploring Fairness Interpretability with FairnessFriend: A Chatbot Solution;2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3