Machine Learning Based Performance Analysis of Video Object Detection and Classification Using Modified Yolov3 and Mobilenet Algorithm

Author:

T Mohandoss1,J Rangaraj2

Affiliation:

1. Department of ECE, Annamalai University, Chidambaram, Tamil Nadu, India.

2. Department of ECE, (Deputed to GCT Coimbatore), Annamalai University, Chidambaram, Tamil Nadu, India.

Abstract

Detecting foreground objects in video is crucial in various machine vision applications and computerized video surveillance technologies. Object tracking and detection are essential in object identification, surveillance, and navigation approaches. Object detection is the technique of differentiating between background and foreground features in a photograph. Recent improvements in vision systems, including distributed smart cameras, have inspired researchers to develop enhanced machine vision applications for embedded systems. The efficiency of featured object detection algorithms declines as dynamic video data increases as contrasted to conventional object detection methods. Moving subjects that are blurred, fast-moving objects, backdrop occlusion, or dynamic background shifts within the foreground area of a video frame can all cause problems. These challenges result in insufficient prominence detection. This work develops a deep-learning model to overcome this issue. For object detection, a novel method utilizing YOLOv3 and MobileNet was built. First, rather than picking predefined feature maps in the conventional YOLOv3 architecture, the technique for determining feature maps in the MobileNet is optimized based on examining the receptive fields. This work focuses on three primary processes: object detection, recognition, and classification, to classify moving objects before shared features. Compared to existing algorithms, experimental findings on public datasets and our dataset reveal that the suggested approach achieves 99% correct classification accuracy for urban settings with moving objects. Experiments reveal that the suggested model beats existing cutting-edge models by speed and computation.

Publisher

Anapub Publications

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Human-Computer Interaction,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3