Improving the Robustness of Object Detection Through a Multi-Camera–Based Fusion Algorithm Using Fuzzy Logic

Author:

Khan Md Nazmuzzaman,Al Hasan Mohammad,Anwar Sohel

Abstract

A single camera creates a bounding box (BB) for the detected object with certain accuracy through a convolutional neural network (CNN). However, a single RGB camera may not be able to capture the actual object within the BB even if the CNN detector accuracy is high for the object. In this research, we present a solution to this limitation through the usage of multiple cameras, projective transformation, and a fuzzy logic–based fusion. The proposed algorithm generates a “confidence score” for each frame to check the trustworthiness of the BB generated by the CNN detector. As a first step toward this solution, we created a two-camera setup to detect objects. Agricultural weed is used as objects to be detected. A CNN detector generates BB for each camera when weed is present. Then a projective transformation is used to project one camera’s image plane to another camera’s image plane. The intersect over union (IOU) overlap of the BB is computed when objects are detected correctly. Four different scenarios are generated based on how far the object is from the multi-camera setup, and IOU overlap is calculated for each scenario (ground truth). When objects are detected correctly and bounding boxes are at correct distance, the IOU overlap value should be close to the ground truth IOU overlap value. On the other hand, the IOU overlap value should differ if BBs are at incorrect positions. Mamdani fuzzy rules are generated using this reasoning, and three different confidence scores (“high,” “ok,” and “low”) are given to each frame based on accuracy and position of BBs. The proposed algorithm was then tested under different conditions to check its validity. The confidence score of the proposed fuzzy system for three different scenarios supports the hypothesis that the multi-camera–based fusion algorithm improved the overall robustness of the detection system.

Publisher

Frontiers Media SA

Reference30 articles.

1. A Fast and Robust Homography Scheme for Real-Time Planar Target Detection;Bazargani;J. Real-time Image Proc.,2018

2. Picking Robot Visual Servo Control Based on Modified Fuzzy Neural Network Sliding Mode Algorithms;Chen;Electronics,2019

3. Random Sample Consensus;Fischler;Commun. ACM,1981

4. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation;Girshick,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3