Comparison of Detection and Classification Algorithms Using Boolean and Fuzzy Techniques

Author:

Dixit Rahul1,Singh Harpreet2

Affiliation:

1. Department of Engineering and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

2. Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

Abstract

Modern military ranging, tracking, and classification systems are capable of generating large quantities of data. Conventional “brute-force” computational techniques, even with Moore’s law for processors, present a prohibitive computational challenge, and often, the system either fails to “lock onto” a target of interest within the available duty cycle, or the data stream is simply discarded because the system runs out of processing power or time. In searching for high-fidelity convergence, researchers have experimented with various reduction techniques, often using logic diagrams to make inferences from related signal data. Conventional Boolean and fuzzy logic systems generate a very large number of rules, which often are difficult to handle due to limitations in the processors. Published research has shown that reasonable approximations of the target are preferred over incomplete computations. This paper gives a figure of merit for comparing various logic analysis methods and presents results for a hypothetical target classification scenario. Novel multiquantization Boolean approaches also reduce the complexity of these multivariate analyses, making it possible to better use the available data to approximate target classification. This paper shows how such preprocessing can reasonably preserve result confidence and compares the results between Boolean, multi-quantization Boolean, and fuzzy techniques.

Publisher

Hindawi Limited

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3