Author:
Chen Hongyu,Zhang Chunrui
Abstract
In this paper, we extend a Leslie–Gower-type predator–prey system with ratio-dependent Holling III functional response considering the cost of antipredator defence due to fear. We study the impact of the fear effect on the model, and we find that many interesting dynamical properties of the model can occur when the fear effect is present. Firstly, the relationship between the fear coefficient K and the positive equilibrium point is introduced. Meanwhile, the existence of the Turing instability, the Hopf bifurcation, and the Turing–Hopf bifurcation are analyzed by some key bifurcation parameters. Next, a normal form for the Turing–Hopf bifurcation is calculated. Finally, numerical simulations are carried out to corroborate our theoretical results.
Subject
Applied Mathematics,Analysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献