Forest model dynamics analysis and optimal control based on disease and fire interactions

Author:

Liu Xiaoxiao1,Zhang Chunrui2

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

2. College of Science, Northeast Forestry University, Harbin 150040, China

Abstract

<abstract><p>Three models for the propagation of forest disease are revisited to include the effect of forest fires and disease spread. We study the global stability of the forest-disease model in the absence of forest fires and the spread of disease. When forest fires caused by grass cover are considered, we show that the equilibrium points are locally asymptotically stable. If both forest fires and the spread of disease exist in the second model, then Turing instability can occur. In this case, the system exhibits complex dynamic behavior. To determine the effect of fire on the forest disease model, we obtain the optimal control expression of the key parameter fire factor, and carry out sensitivity analysis. Finally, we use forest biomass data of some provinces in China from 2002 to 2018 for numerical simulation, and the results are in agreement with the theoretical analysis.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3