Abstract
<abstract><p>To understand the influence of the Allee effect and intraspecific cooperation on the dynamics of a predator-prey system, we constructed a model using ordinary differential equations. Our research shows that the system exhibits more complex dynamics, including possible bistability between alternative semi-trivial states and an Allee effect for prey. The Allee effect can destabilize the system. The equilibrium points of the system could change from stable to unstable. Otherwise, even if the system were stable, it would take much longer time to reach a stable state. We also find that the presence of the Allee effect of prey increases the positive equilibrium density of the predator but has no effect on the positive equilibrium density of the prey. It should be noted that the influence of nonlinear predator mortality also causes the system to take a longer time to reach a steady state.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference30 articles.
1. R. Hering, Oscillations in Lotka-Volterra systems of chemical reactions, J. Math. Chem., 5 (1990), 197–202. https://doi.org/10.1007/BF01166429
2. G. Laval, R. Pellat, M. Perulli, Study of the disintegration of Langmuir waves, Plasma Physics, 11 (1969), 579–588. https://dx.doi.org/10.1088/0032-1028/11/7/003
3. F. Busse, Transition to Turbulence Via the Statistical Limit Cycle Route, (eds H. Haken) Chaos and Order in Nature. Springer Series in Synergetics, Berlin: Springer, 1981. https://doi.org/10.1007/978-3-642-68304-6_4
4. S. Solomon, P. Richmond, Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf, Eur. Phys. J. B., 27 (2002), 257–261. https://doi.org/10.1140/epjb/e20020152
5. M. Carfora, I. Torcicollo, Cross-Diffusion-Driven instability in a predator-prey system with fear and group defense, Mathematics, 8 (2020), 1244. https://doi.org/10.3390/math8081244