Soil microbial biomass and diversity respond to tillage and sulphur fertilizers

Author:

Lupwayi N. Z.,Monreal M. A.,Clayton G. W.,Grant C. A.,Johnston A. M.,Rice W. A.

Abstract

There is little information on the effects of S management strategies on soil microorganisms under zero tillage systems o n the North American Prairies. Experiments were conducted to examine the effects of tillage and source and placement of S on soil microbial biomass (substrate induced respiration) and functional diversity (substrate utilization patterns) in a canola-wheat rotation under conventional and zero tillage systems at three sites in Gray Luvisolic and Black Chernozemic soils. Conventional tillage significantly reduced microbial biomass and diversity on an acidic and C-poor Luvisolic soil, but it had mostly no significant effects on the near-neutral, C-rich Luvisolic and Chernozemic soils, which underlines the importance of soil C in maintaining a healthy soil. Sulphur had no significant effects on soil microbial biomass, and its effects on microbial diversity were more frequent on the near-neutral Luvisol, which was more S-deficient, than on the acidic Luvisol or the Chernozem. Significant S effects on microbial diversity were observed both in the bulk soil (negative effects, compared with the control) and rhizosphere (positive effects) of the acidic Luvisol, but all significant effects (positive) were observed in root rhizospheres in the other soils. Sulphur by tillage interactions on acidic Luvisolic soil indicated that the negative effects of S in bulk soil occurred mostly under zero tillage, presumably because the fertilizer is concentrated in a smaller volume of soil than under conventional tillage. Sulphate S effects, either negative or positive, on microbial diversity were usually greater than elemental S effects. Therefore, S application can have direct, deleterious effects on soil microorganisms or indirect, beneficial effects through crop growth, the latter presumably due to increased root exudation in the rhizosphere of healthy crops. Key Words: Biolog, conservation tillage, microbial biodiversity, rhizosphere, soil biological quality, S fertilizer type and placement

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3