Microbial functional genes within soil aggregates drive organic carbon mineralization under contrasting tillage practices

Author:

Wang Weiyan123ORCID,Zhang Houping1,Vinay Nangia4,Wang Dong1,Mo Fei13,Liao Yuncheng12,Wen Xiaoxia1

Affiliation:

1. College of Agronomy Northwest A&F University Yangling Shaanxi PR China

2. Ministerial and Provincial Co‐Innovation Centre for Endemic Crops Production with High‐quality and Efficiency in Loess Plateau Shanxi Agricultural University Taiyuan Shanxi PR China

3. Key Laboratory of Crop Physi‐ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture Northwest A&F University Yangling Shaanxi PR China

4. International Center for Agricultural Research in the Dry Areas (ICARDA) Rabat Morocco

Abstract

AbstractSoil organic carbon (SOC) transformation is susceptible to tillage practices. Conservation tillage is known to optimize soil structure, improve microbial community diversity and increase SOC storage. However, how soil aggregate distribution and microbial community structure and function within aggregates affect SOC transformation under long‐term conservation tillage remains unclear. In this study, SOC mineralization dynamics were studied in situ and under laboratory conditions to examine the mechanisms by which C functional genes within soil aggregates of different sizes (i.e., mega‐, macro‐, and micro‐aggregates) influence SOC mineralization under long‐term tillage (i.e., zero, chisel, and plow tillage) in a dryland. The results indicated that in the winter wheat and summer maize rotation cropping system, SOC‐derived CO2‐C emissions were 143.99 and 133.29 g CO2‐C m−2 h−1 lower under chisel and zero tillage than that under plow tillage, respectively. Moreover, after 180 days of laboratory incubation, SOC mineralization in micro‐ and macro‐aggregates was 1.98 and 1.63 mg CO2‐C g−1 d−1 higher than that in mega‐aggregates, respectively. The aggregate‐associated differential modules of bacterial co‐occurring networks may be directly governed by bacterial community diversity and composition, which might play critical roles in driving SOC mineralization in response to different tillage intensities. Moreover, aggregate‐associated functional genes involved in labile and recalcitrant C compositions, which were determined by shotgun metagenomic sequencing, were associated with SOC mineralization and were significantly affected by the legacy effect of tillage intensity and aggregate size. Particularly, partial least squares path modeling revealed that genes involved in simple sugar metabolism exerted significantly positive effects on SOC mineralization, except for the effects of tillage intensity and aggregate size. Overall, this study showed that decreased abundances of labile C decomposition‐related functional genes within aggregates and community composition changes, as elucidated by the differences in bacterial network modules, under conservation tillage inhibit SOC mineralization. These findings may help in the development of adaptive soil tillage strategies for reducing carbon emissions in agroecosystems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3