Effect of Soil Application of Zeolite-Carbon Composite, Leonardite and Lignite on the Microorganisms

Author:

Wolny-Koładka Katarzyna12ORCID,Marcińska-Mazur Lidia2ORCID,Jarosz Renata2ORCID,Juda Michał2,Lošák Tomáš3ORCID,Mierzwa-Hersztek Monika24ORCID

Affiliation:

1. Department of Microbiology and Biomonitoring , University of Agriculture in Krakow , al. A. Mickiewicza 24/28, 30-059 Kraków , Poland

2. Department of Mineralogy, Petrography and Geochemistry , AGH University of Science and Technology , al. A. Mickiewicza 30, 30-059 Kraków , Poland

3. Department of Environmentalistics and Natural Resources , Mendel University in Brno , Brno , Czech Republic

4. Department of Agricultural and Environmental Chemistry , University of Agriculture in Kraków , al. A. Mickiewicza 21, 31-120 Kraków , Poland

Abstract

Abstract The aim of the study was to evaluate the effect of mineral-organic mixture on changes in the abundance of selected soil microorganisms. The experiment contained: soil with NPK (nitrogen, potassium, phosphorus) + 3 % or 6 % lignite (MF+CW3 %, MF+CW6 %) and 3 % zeolite-carbon composite (NaX-C); soil with NPK + 3 % or 6 % leonardite (MF+CL3 %, MF+CL6 %) and 3 % NaX-C; soil without fertilisation (C); soil fertilised with mineral NPK fertilisers (MF). Plants participating in the experiment were spring wheat and spring oilseed rape. The presence of the selected microorganisms was determined: Azotobacter spp., actinomycetes, ammonifiers, bacteria and mold fungi. Using Koch’s serial dilution method, the abundance of selected soil microorganisms was performed. The conducted research allows to conclude that the abundance of detected microorganisms depended on both the applied fertilisation and the plant grown. For the spring oilseed rape, the highest abundance of microorganisms was determined in treatments where fertilisation with lignite mixtures was applied, while for spring wheat, with leonardite mixtures. Increasing (from 3 % to 6 %) the share of lignite and leonardite in fertiliser mixtures did not translate into a proportional growth in the abundance of microorganisms, so such a treatment has no economic justification. Given their alkaline pH, the mixtures used can be a substitute for calcium fertilisers to improve soil properties and, consequently, protect soil organic matter from degradation.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3