Greenhouse gas emissions intensity of Ontario milk production in 2011 compared with 1991

Author:

Jayasundara Susantha1,Wagner-Riddle Claudia1

Affiliation:

1. School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Jayasundara, S. and Wagner-Riddle, C. 2014. Greenhouse gas emissions intensity of Ontario milk production in 2011 compared with 1991. Can. J. Anim. Sci. 94: 155–173. For identifying opportunities for reducing greenhouse gas (GHG) emissions from milk production in Ontario, this study analyzed GHG intensity of milk [kg CO2 equivalents kg−1 fat and protein corrected milk (FPCM)] in 2011 compared with 1991 considering cow and crop productivity improvements and management changes over this period. It also assessed within-province variability in GHG intensity of milk in 2011 using county-level data related to milk production. After allocating whole-farm GHG emissions between milk and meat using an allocation factor calculated according to the International Dairy Federation equation, GHG intensity of Ontario milk was 1.03 kgCO2eq kg−1 FPCM in 2011, 22% lower than that in 1991 (1.32 kg CO2eq kg−1 FPCM). Greenhouse gas sources directly associated with dairy cattle decreased less (21 and 14% for enteric fermentation and manure management, respectively) than sources associated with feed crop production (30 to 34% for emissions related to N inputs and farm-field work). Proportions of GHG contributed from different life cycle activities did not change, with enteric fermentation contributing 46%, feed crop production 34%, manure management 18% and milking and related activities 2%. Within province, GHG intensity varied from 0.89 to 1.36 kg CO2eq kg−1 FPCM, a variation inversely correlated with milk productivity per cow (kg FPCM sold cow−1 year−1). The existence of a wide variation is strong indication for potential further reductions in GHG intensity of Ontario milk through the identification of practices associated with high efficiency.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3