Current Perspectives on Achieving Pronounced Enteric Methane Mitigation From Ruminant Production

Author:

Ungerfeld Emilio M.,Beauchemin Karen A.,Muñoz Camila

Abstract

Limiting global warming to 1.5°C above pre-industrial levels by 2050 requires achieving net zero emissions of greenhouse gases by 2050 and a strong decrease in methane (CH4) emissions. Our aim was to connect the global need for mitigation of the emissions of greenhouse gases and enteric CH4 from ruminant production to basic research on the biological consequences of inhibiting rumen methanogenesis in order to better design strategies for pronounced mitigation of enteric CH4 production without negative impacts on animal productivity or economic returns. Ruminant production worldwide has the challenge of decreasing its emissions of greenhouse gases while increasing the production of meat and milk to meet consumers demand. Production intensification decreases the emissions of greenhouse gases per unit of product, and in some instances has decreased total emissions, but in other instances has resulted in increased total emissions of greenhouse gases. We propose that decreasing total emission of greenhouse gases from ruminants in the next decades while simultaneously increasing meat and milk production will require strong inhibition of rumen methanogenesis. An aggressive approach to pronounced inhibition of enteric CH4 emissions is technically possible through the use of chemical compounds and/or bromoform-containing algae, but aspects such as safety, availability, government approval, consumer acceptance, and impacts on productivity and economic returns must be satisfactorily addressed. Feeding these additives will increase the cost of ruminant diets, which can discourage their adoption. On the other hand, inhibiting rumen methanogenesis potentially saves energy for the host animal and causes profound changes in rumen fermentation and post-absorptive metabolism. Understanding the biological consequences of methanogenesis inhibition could allow designing strategies to optimize the intervention. We conducted meta-regressions using published studies with at least one treatment with >50% inhibition of CH4 production to elucidate the responses of key rumen metabolites and animal variables to methanogenesis inhibition, and understand possible consequences on post-absorptive metabolism. We propose possible avenues, attainable through the understanding of biological consequences of the methanogenesis inhibition intervention, to increase animal productivity or decrease feed costs when inhibiting methanogenesis.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3