Effect of maceration on nitrogen fractions in hay and silage

Author:

Agbossamey Y. R.,Savoie P.,Seoane J. R.

Abstract

An intensive mechanical conditioning treatment, referred to as maceration, was applied at mowing to alfalfa or timothy in order to enhance drying rate, reduce wilting time and possibly reduce respiration losses and proteolysis. In 1995, a laboratory trial was conducted using two levels of force (1750 and 3500 Newton) and five levels of conditioning: a control (no conditioning), one passage, three passages, five passages and seven passages through two steel knurled rolls. All forages were dried in a controlled environment at 30 °C and conserved as hay. The level of force did not affect the chemical composition of the forages obtained. However the nitrogen (N) fractions were affected by the level of maceration. As the level of conditioning increased, the soluble N fractions (A and B1) of both forages decreased (P < 0.001). Meanwhile, the slowly degradable N fraction (B3) increased linearly (P < 0.001) in timothy and quadratically (P < 0.003) in alfalfa. The fraction of unavailable N (fraction C) also increased linearly (P < 0.01) with intensity of maceration. In 1996, alfalfa was conditioned in the field at four intensity levels: a control (rubber roll-conditioning), one passage, two passages, and three passages through a full-size mower-macerator with three knurled rolls. The alfalfa dried under poor climatic conditions with alternating rain and sunshine and was conserved as silage at 30% dry matter (DM) after a 40-h wilt or as hay after a 90-h wilt. Neutral detergent fibre (NDF), acid detergent fibre (ADF), and ash contents increased linearly (P < 0.001) with the level of maceration; the increase was greater in hay than in silage. The non protein nitrogen (fraction A) decreased (P < 0.001) while fraction B3 and unavailable N (fraction C) increased (P < 0.001) with level of maceration. The results suggest that maceration decreases the extent of proteolysis during conservation and preserves a higher proportion of the slowly degradable N (escape nitrogen). Key words: Forage, maceration, chemical composition, nitrogen fractions

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3