Abstract
ObjectiveTo train and validate a code-free deep learning system (CFDLS) on classifying high-resolution digital retroillumination images of posterior capsule opacification (PCO) and to discriminate between clinically significant and non-significant PCOs.Methods and analysisFor this retrospective registry study, three expert observers graded two independent datasets of 279 images three separate times with no PCO to severe PCO, providing binary labels for clinical significance. The CFDLS was trained and internally validated using 179 images of a training dataset and externally validated with 100 images. Model development was through Google Cloud AutoML Vision. Intraobserver and interobserver variabilities were assessed using Fleiss kappa (κ) coefficients and model performance through sensitivity, specificity and area under the curve (AUC).ResultsIntraobserver variability κ values for observers 1, 2 and 3 were 0.90 (95% CI 0.86 to 0.95), 0.94 (95% CI 0.90 to 0.97) and 0.88 (95% CI 0.82 to 0.93). Interobserver agreement was high, ranging from 0.85 (95% CI 0.79 to 0.90) between observers 1 and 2 to 0.90 (95% CI 0.85 to 0.94) for observers 1 and 3. On internal validation, the AUC of the CFDLS was 0.99 (95% CI 0.92 to 1.0); sensitivity was 0.89 at a specificity of 1. On external validation, the AUC was 0.97 (95% CI 0.93 to 0.99); sensitivity was 0.84 and specificity was 0.92.ConclusionThis CFDLS provides highly accurate discrimination between clinically significant and non-significant PCO equivalent to human expert graders. The clinical value as a potential decision support tool in different models of care warrants further research.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献