Predicting sex from retinal fundus photographs using automated deep learning

Author:

Korot Edward,Pontikos Nikolas,Liu Xiaoxuan,Wagner Siegfried K.,Faes Livia,Huemer Josef,Balaskas Konstantinos,Denniston Alastair K.,Khawaja Anthony,Keane Pearse A.

Abstract

AbstractDeep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. Herein we present the development of a deep learning model by clinicians without coding, which predicts reported sex from retinal fundus photographs. A model was trained on 84,743 retinal fundus photos from the UK Biobank dataset. External validation was performed on 252 fundus photos from a tertiary ophthalmic referral center. For internal validation, the area under the receiver operating characteristic curve (AUROC) of the code free deep learning (CFDL) model was 0.93. Sensitivity, specificity, positive predictive value (PPV) and accuracy (ACC) were 88.8%, 83.6%, 87.3% and 86.5%, and for external validation were 83.9%, 72.2%, 78.2% and 78.6% respectively. Clinicians are currently unaware of distinct retinal feature variations between males and females, highlighting the importance of model explainability for this task. The model performed significantly worse when foveal pathology was present in the external validation dataset, ACC: 69.4%, compared to 85.4% in healthy eyes, suggesting the fovea is a salient region for model performance OR (95% CI): 0.36 (0.19, 0.70) p = 0.0022. Automated machine learning (AutoML) may enable clinician-driven automated discovery of novel insights and disease biomarkers.

Funder

Moorfields Eye Charity

UK Research and Innovation

National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3