Affiliation:
1. Department of Ophthalmology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
2. Furong Laboratory Central South University Changsha Hunan China
3. Institute of Translational Medicine Shanghai Jiao Tong University Shanghai China
4. Shanghai University of Sport School of Exercise and Health Shanghai China
5. Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Abstract
AbstractBackgroundPosterior capsular opacification (PCO) is a common complication following cataract surgery that leads to visual disturbances and decreased quality of vision. The aim of our study was to employ a machine‐learning methodology to characterize and validate enhancements applied to the grey‐level co‐occurrence matrix (GLCM) while assessing its validity in comparison to clinical evaluations for evaluating PCO.MethodsOne hundred patients diagnosed with age‐related cataracts who were scheduled for phacoemulsification surgery were included in the study. Following mydriasis, anterior segment photographs were captured using a high‐resolution photographic system. The GLCM was utilized as the feature extractor, and a supported vector machine as the regressor. Three variations, namely, GLCM, GLCM+C (+axial information), and GLCM+V (+regional voting), were analyzed. The reference value for regression was determined by averaging clinical scores obtained through subjective analysis. The relationships between the predicted PCO outcome scores and the ground truth were assessed using Pearson correlation analysis and a Bland–Altman plot, while agreement between them was assessed through the Bland–Altman plot.ResultsRelative to the ground truth, the GLCM, GLCM+C, and GLCM+V methods exhibited correlation coefficients of 0.706, 0.768, and 0.829, respectively. The relationship between the PCO score predicted by the GLCM+V method and the ground truth was statistically significant (p < 0.001). Furthermore, the GLCM+V method demonstrated competitive performance comparable to that of two experienced clinicians (r = 0.825, 0.843) and superior to that of two junior clinicians (r = 0.786, 0.756). Notably, a high level of agreement was observed between predictions and the ground truth, without significant evidence of proportional bias (p > 0.05).ConclusionsOverall, our findings suggest that a machine‐learning approach incorporating the GLCM, specifically the GLCM+V method, holds promise as an objective and reliable tool for assessing PCO progression. Further studies in larger patient cohorts are warranted to validate these findings and explore their potential clinical applications.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献