Public health impact of delaying second dose of BNT162b2 or mRNA-1273 covid-19 vaccine: simulation agent based modeling study

Author:

Romero-Brufau SantiagoORCID,Chopra AyushORCID,Ryu Alex JORCID,Gel Esma,Raskar RameshORCID,Kremers WalterORCID,Anderson Karen SORCID,Subramanian JayakumarORCID,Krishnamurthy BalajiORCID,Singh AbhishekORCID,Pasupathy KalyanORCID,Dong YueORCID,O’Horo John CORCID,Wilson Walter RORCID,Mitchell OscarORCID,Kingsley Thomas CORCID

Abstract

Abstract Objective To estimate population health outcomes with delayed second dose versus standard schedule of SARS-CoV-2 mRNA vaccination. Design Simulation agent based modeling study. Setting Simulated population based on real world US county. Participants The simulation included 100 000 agents, with a representative distribution of demographics and occupations. Networks of contacts were established to simulate potentially infectious interactions though occupation, household, and random interactions. Interventions Simulation of standard covid-19 vaccination versus delayed second dose vaccination prioritizing the first dose. The simulation runs were replicated 10 times. Sensitivity analyses included first dose vaccine efficacy of 50%, 60%, 70%, 80%, and 90% after day 12 post-vaccination; vaccination rate of 0.1%, 0.3%, and 1% of population per day; assuming the vaccine prevents only symptoms but not asymptomatic spread (that is, non-sterilizing vaccine); and an alternative vaccination strategy that implements delayed second dose for people under 65 years of age, but not until all those above this age have been vaccinated. Main outcome measures Cumulative covid-19 mortality, cumulative SARS-CoV-2 infections, and cumulative hospital admissions due to covid-19 over 180 days. Results Over all simulation replications, the median cumulative mortality per 100 000 for standard dosing versus delayed second dose was 226 v 179, 233 v 207, and 235 v 236 for 90%, 80%, and 70% first dose efficacy, respectively. The delayed second dose strategy was optimal for vaccine efficacies at or above 80% and vaccination rates at or below 0.3% of the population per day, under both sterilizing and non-sterilizing vaccine assumptions, resulting in absolute cumulative mortality reductions between 26 and 47 per 100 000. The delayed second dose strategy for people under 65 performed consistently well under all vaccination rates tested. Conclusions A delayed second dose vaccination strategy, at least for people aged under 65, could result in reduced cumulative mortality under certain conditions.

Publisher

BMJ

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3