Limitations in creating artificial populations in agent-based epidemic modeling: a systematic review

Author:

Maslova Irina I.ORCID,Manolov Aleksandr I.ORCID,Glushchenko Oksana E.ORCID,Kozlov Ivan E.ORCID,Tsurkis Vera I.ORCID,Popov Nikolay S.ORCID,Samoilov Andrey E.ORCID,Lukashev Alexandr N.ORCID,Ilina Elena N.ORCID

Abstract

Introduction. The key step in agent-based modeling of epidemics, which allows researchers to take into account individual characteristics of people, is the creation of an artificial population. The main difficulty of this procedure is finding a balance between the detail of the population description and the computational efficiency of the calculations. The aim and objectives of the review: Critically analyze and summarize the current evidence on how to create artificial populations; evaluate the limitations and advantages of available approaches in solving various problems in epidemiology. Materials and methods. An analysis of literature sources devoted to agent-based modeling has been performed. The analysis is focused on algorithms for creating an artificial population with a given level of detail for modeling human respiratory infections. Results. The approaches to the creation of artificial populations are generalized. The main principles of realization of interaction between agents are revealed: by means of networks of contacts between agents and on the basis of taking into account the movement of agents between locations. The first approach is the most computationally efficient and simple; the second approach allows to better take into account the change in the behavior of agents during the development of the epidemic process. Conclusion. Agent-based modeling is an optimal tool for selecting the best scenario for epidemic control and investigating the role of individual characteristics of people in the development of epidemics. When creating an artificial population, it is important to include in the model factors that can be targeted for control. A significant limitation is the lack of factual data on population structure, but this can be overcome by using indirect data.

Publisher

Central Research Institute for Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3