Accuracy and precision of transcutaneous carbon dioxide monitoring: a systematic review and meta-analysis

Author:

Conway AaronORCID,Tipton Elizabeth,Liu Wei-Hong,Conway Zachary,Soalheira Kathleen,Sutherland Joanna,Fingleton JamesORCID

Abstract

BackgroundTranscutaneous carbon dioxide (TcCO2) monitoring is a non-invasive alternative to arterial blood sampling. The aim of this review was to determine the accuracy and precision of TcCO2 measurements.MethodsMedline and EMBASE (2000–2016) were searched for studies that reported on a measurement of PaCO2 that coincided with a measurement of TcCO2. Study selection and quality assessment (using the revised Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2)) were performed independently. The Grading Quality of Evidence and Strength of Recommendation approach was used to summarise the strength of the body of evidence. Pooled estimates of the mean bias between TcCO2 and PaCO2 and limits of agreement with outer 95% CIs (termed population limits of agreement) were calculated.ResultsThe mean bias was −0.1 mm Hg and the population limits of agreement were −15 to 15 mm Hg for 7021 paired measurements taken from 2817 participants in 73 studies, which was outside of the clinically acceptable range (7.5 mm Hg). The lowest PaCO2 reported in the studies was 18 mm Hg and the highest was 103 mm Hg. The major sources of inconsistency were sensor location and temperature. The population limits of agreement were within the clinically acceptable range across 3974 paired measurements from 1786 participants in 44 studies that applied the sensor to the earlobe using the TOSCA and Sentec devices (−6 to 6 mm Hg).ConclusionThere are substantial differences between TcCO2 and PaCO2 depending on the context in which this technology is used. TcCO2 sensors should preferentially be applied to the earlobe and users should consider setting the temperature of the sensor higher than 42°C when monitoring at other sites.Systematic review registration numberPROSPERO; CRD42017057450.

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3