Electroacupuncture Prevents Ovariectomy-Induced Osteoporosis in Rats: A Randomised Controlled Trial

Author:

Zhou Jun1,Chen Shiju1,Guo Hua1,Xia Lu1,Liu Huifang1,Qin Yuxi1,He Chengqi1

Affiliation:

1. Rehabilitation Key Laboratory of Sichuan Province, Department of Rehabilitation, West China Hospital, Sichuan University, Sichuan, People's Republic of China

Abstract

Background Electroacupuncture (EA) treatment has been shown to increase bone mineral density (BMD) in ovariectomised (OVX) rats; however, the underlying mechanisms remain unclear. Objective To systematically evaluate the effects of EA on OVX rats and the Wnt/β-catenin signalling pathway. Methods Three-month-old female Sprague–Dawley rats were randomly divided into three different groups (n=10 each): sham operated control (sham operated), ovariectomy (OVX) and ovariectomy with EA treatment (OVX+EA). Rats in the OVX+EA group received 12-week EA treatments. Results Serum bone-specific alkaline phosphatase level (p<0.01), BMD of the proximal femoral metaphysis and the fifth lumbar (L5) vertebral body (both, p<0.05) and maximum load and energy to failure of L5 vertebral body (both p<0.01) were significantly higher in the OVX+EA group than in the OVX group. Trabecular area, trabecular width and trabecular number were significantly higher in the OVX+EA group by 66.9%, 29.2% and 30.3%, respectively, than in the OVX group (all, p<0.01). Trabecular separation was 31.9% lower in the OVX+EA group than in the OVX group (p<0.01). Quantitative real-time reverse transcription polymerised chain reaction indicated that the expressions of mRNAs for low-density lipoprotein receptor-related protein 5 and β-catenin were significantly increased in the OVX+EA group, as compared with the OVX group (p<0.01 and p<0.05, respectively). Conclusion This study demonstrates that EA can prevent OVX-induced bone loss and deterioration of bone architecture and strength by stimulating the Wnt/β-catenin signalling pathway. These findings suggest that EA may bet a promising adjunct method for inhibiting OVX-induced osteoporosis in clinical settings.

Publisher

SAGE Publications

Subject

Neurology (clinical),Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3