Machine learning techniques for mortality prediction in emergency departments: a systematic review

Author:

Naemi AminORCID,Schmidt ThomasORCID,Mansourvar MarjanORCID,Naghavi-Behzad MohammadORCID,Ebrahimi AliORCID,Wiil Uffe KockORCID

Abstract

ObjectivesThis systematic review aimed to assess the performance and clinical feasibility of machine learning (ML) algorithms in prediction of in-hospital mortality for medical patients using vital signs at emergency departments (EDs).DesignA systematic review was performed.SettingThe databases including Medline (PubMed), Scopus and Embase (Ovid) were searched between 2010 and 2021, to extract published articles in English, describing ML-based models utilising vital sign variables to predict in-hospital mortality for patients admitted at EDs. Critical appraisal and data extraction for systematic reviews of prediction modelling studies checklist was used for study planning and data extraction. The risk of bias for included papers was assessed using the prediction risk of bias assessment tool.ParticipantsAdmitted patients to the ED.Main outcome measureIn-hospital mortality.ResultsFifteen articles were included in the final review. We found that eight models including logistic regression, decision tree, K-nearest neighbours, support vector machine, gradient boosting, random forest, artificial neural networks and deep neural networks have been applied in this domain. Most studies failed to report essential main analysis steps such as data preprocessing and handling missing values. Fourteen included studies had a high risk of bias in the statistical analysis part, which could lead to poor performance in practice. Although the main aim of all studies was developing a predictive model for mortality, nine articles did not provide a time horizon for the prediction.ConclusionThis review provided an updated overview of the state-of-the-art and revealed research gaps; based on these, we provide eight recommendations for future studies to make the use of ML more feasible in practice. By following these recommendations, we expect to see more robust ML models applied in the future to help clinicians identify patient deterioration earlier.

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3