A comparative study of explainable ensemble learning and logistic regression for predicting in-hospital mortality in the emergency department

Author:

Rahmatinejad Zahra,Dehghani Toktam,Hoseini Benyamin,Rahmatinejad Fatemeh,Lotfata Aynaz,Reihani Hamidreza,Eslami Saeid

Abstract

AbstractThis study addresses the challenges associated with emergency department (ED) overcrowding and emphasizes the need for efficient risk stratification tools to identify high-risk patients for early intervention. While several scoring systems, often based on logistic regression (LR) models, have been proposed to indicate patient illness severity, this study aims to compare the predictive performance of ensemble learning (EL) models with LR for in-hospital mortality in the ED. A cross-sectional single-center study was conducted at the ED of Imam Reza Hospital in northeast Iran from March 2016 to March 2017. The study included adult patients with one to three levels of emergency severity index. EL models using Bagging, AdaBoost, random forests (RF), Stacking and extreme gradient boosting (XGB) algorithms, along with an LR model, were constructed. The training and validation visits from the ED were randomly divided into 80% and 20%, respectively. After training the proposed models using tenfold cross-validation, their predictive performance was evaluated. Model performance was compared using the Brier score (BS), The area under the receiver operating characteristics curve (AUROC), The area and precision–recall curve (AUCPR), Hosmer–Lemeshow (H–L) goodness-of-fit test, precision, sensitivity, accuracy, F1-score, and Matthews correlation coefficient (MCC). The study included 2025 unique patients admitted to the hospital’s ED, with a total percentage of hospital deaths at approximately 19%. In the training group and the validation group, 274 of 1476 (18.6%) and 152 of 728 (20.8%) patients died during hospitalization, respectively. According to the evaluation of the presented framework, EL models, particularly Bagging, predicted in-hospital mortality with the highest AUROC (0.839, CI (0.802–0.875)) and AUCPR = 0.64 comparable in terms of discrimination power with LR (AUROC (0.826, CI (0.787–0.864)) and AUCPR = 0.61). XGB achieved the highest precision (0.83), sensitivity (0.831), accuracy (0.842), F1-score (0.833), and the highest MCC (0.48). Additionally, the most accurate models in the unbalanced dataset belonged to RF with the lowest BS (0.128). Although all studied models overestimate mortality risk and have insufficient calibration (P > 0.05), stacking demonstrated relatively good agreement between predicted and actual mortality. EL models are not superior to LR in predicting in-hospital mortality in the ED. Both EL and LR models can be considered as screening tools to identify patients at risk of mortality.

Funder

Mashhad University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3