Training machine learning models to predict 30-day mortality in patients discharged from the emergency department: a retrospective, population-based registry study

Author:

Blom Mathias Carl,Ashfaq Awais,Sant'Anna Anita,Anderson Philip D,Lingman Markus

Abstract

ObjectivesThe aim of this work was to train machine learning models to identify patients at end of life with clinically meaningful diagnostic accuracy, using 30-day mortality in patients discharged from the emergency department (ED) as a proxy.DesignRetrospective, population-based registry study.SettingSwedish health services.Primary and secondary outcome measuresAll cause 30-day mortality.MethodsElectronic health records (EHRs) and administrative data were used to train six supervised machine learning models to predict all-cause mortality within 30 days in patients discharged from EDs in southern Sweden, Europe.ParticipantsThe models were trained using 65 776 ED visits and validated on 55 164 visits from a separate ED to which the models were not exposed during training.ResultsThe outcome occurred in 136 visits (0.21%) in the development set and in 83 visits (0.15%) in the validation set. The model with highest discrimination attained ROC–AUC 0.95 (95% CI 0.93 to 0.96), with sensitivity 0.87 (95% CI 0.80 to 0.93) and specificity 0.86 (0.86 to 0.86) on the validation set.ConclusionsMultiple models displayed excellent discrimination on the validation set and outperformed available indexes for short-term mortality prediction interms of ROC–AUC (by indirect comparison). The practical utility of the models increases as the data they were trained on did not require costly de novo collection but were real-world data generated as a by-product of routine care delivery.

Funder

Region Halland, Sweden

Halmstad University, Sweden

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3