Automating detection of diagnostic error of infectious diseases using machine learning

Author:

Peterson Kelly S.ORCID,Chapman Alec B.,Widanagamaachchi Wathsala,Sutton Jesse,Ochoa Brennan,Jones Barbara E.,Stevens Vanessa,Classen David C.,Jones Makoto M.

Abstract

Diagnostic error, a cause of substantial morbidity and mortality, is largely discovered and evaluated through self-report and manual review, which is costly and not suitable to real-time intervention. Opportunities exist to leverage electronic health record data for automated detection of potential misdiagnosis, executed at scale and generalized across diseases. We propose a novel automated approach to identifying diagnostic divergence considering both diagnosis and risk of mortality. Our objective was to identify cases of emergency department infectious disease misdiagnoses by measuring the deviation between predicted diagnosis and documented diagnosis, weighted by mortality. Two machine learning models were trained for prediction of infectious disease and mortality using the first 24h of data. Charts were manually reviewed by clinicians to determine whether there could have been a more correct or timely diagnosis. The proposed approach was validated against manual reviews and compared using the Spearman rank correlation. We analyzed 6.5 million ED visits and over 700 million associated clinical features from over one hundred emergency departments. The testing set performances of the infectious disease (Macro F1 = 86.7, AUROC 90.6 to 94.7) and mortality model (Macro F1 = 97.6, AUROC 89.1 to 89.1) were in expected ranges. Human reviews and the proposed automated metric demonstrated positive correlations ranging from 0.231 to 0.358. The proposed approach for diagnostic deviation shows promise as a potential tool for clinicians to find diagnostic errors. Given the vast number of clinical features used in this analysis, further improvements likely need to either take greater account of data structure (what occurs before when) or involve natural language processing. Further work is needed to explain the potential reasons for divergence and to refine and validate the approach for implementation in real-world settings.

Funder

Gordon and Betty Moore Foundation

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3