Randomised crossover trial comparing algorithms and averaging times for automatic oxygen control in preterm infants

Author:

Schwarz Christoph EORCID,Kreutzer Karen BORCID,Langanky Lukas,Wolf Nicole S,Braun Wolfgang,O'Sullivan Marc Paul,Poets Christian FORCID,Franz Axel R

Abstract

ObjectiveAutomatic control (SPOC) of the fraction of inspired oxygen (FiO2), based on continuous analysis of pulse oximeter saturation (SpO2), improves the proportion of time preterm infants spend within a specified SpO2-target range (Target%). We evaluated if a revised SPOC algorithm (SPOCnew, including an upper limit for FiO2) compared to both routine manual control (RMC) and the previously tested algorithm (SPOCold, unrestricted maximum FiO2) increases Target%, and evaluated the effect of the pulse oximeter’s averaging time on controlling the SpO2 signal during SPOC periods.DesignUnblinded, randomised controlled crossover study comparing 2 SPOC algorithms and 2 SpO2 averaging times in random order: 12 hours SPOCnew and 12 hours SPOCold (averaging time 2 s or 8 s for 6 hours each) were compared with 6-hour RMC. A generated list of random numbers was used for allocation sequence.SettingUniversity-affiliated tertiary neonatal intensive care unit, GermanyPatientsTwenty-four infants on non-invasive respiratory support with FiO2 >0.21 were analysed (median gestational age at birth, birth weight and age at randomisation were 25.3 weeks, 585 g and 30 days).Main outcome measureTarget%.ResultsMean (SD) [95% CI] Target% was 56% (9) [52, 59] for RMC versus 69% (9) [65, 72] for SPOCold_2s, 70% (7) [67, 73] for SPOCnew_2s, 71% (8) [68, 74] for SPOCold_8s and 72% (8) [69, 75] for SPOCnew_8s.ConclusionsIrrespective of SpO2-averaging time, Target% was higher with both SPOC algorithms compared to RMC. Despite limiting the maximum FiO2, SPOCnew remained significantly better at maintaining SpO2 within target range compared to RMC.Trial registrationNCT03785899

Funder

Fritz Stephan GmbH, Gackenbach, Germany

Publisher

BMJ

Subject

Obstetrics and Gynecology,General Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3