Author:
Nishide Masayuki,Nojima Satoshi,Ito Daisuke,Takamatsu Hyota,Koyama Shohei,Kang Sujin,Kimura Tetsuya,Morimoto Keiko,Hosokawa Takashi,Hayama Yoshitomo,Kinehara Yuhei,Kato Yasuhiro,Nakatani Takeshi,Nakanishi Yoshimitsu,Tsuda Takeshi,Park Jeong Hoon,Hirano Toru,Shima Yoshihito,Narazaki Masashi,Morii Eiichi,Kumanogoh Atsushi
Abstract
ObjectivesInappropriate activation of neutrophils plays a pathological role in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The aim of this study was to investigate the functions of semaphorin 4D (SEMA4D) in regulation of neutrophil activation, and its involvement in AAV pathogenesis.MethodsSerum levels of soluble SEMA4D were evaluated by ELISA. Blood cell-surface expression of membrane SEMA4D was evaluated by flow cytometry. To determine the functional interactions between neutrophil membrane SEMA4D and endothelial plexin B2, wild-type and SEMA4D−/− mice neutrophils were cultured with an endothelial cell line (MS1) stained with SYTOX green, and subjected to neutrophil extracellular trap (NET) formation assays. The efficacy of treating human neutrophils with recombinant plexin B2 was assessed by measuring the kinetic oxidative burst and NET formation assays.ResultsSerum levels of soluble SEMA4D were elevated in patients with AAV and correlated with disease activity scores. Cell-surface expression of SEMA4D was downregulated in neutrophils from patients with AAV, a consequence of proteolytic cleavage of membrane SEMA4D. Soluble SEMA4D exerted pro-inflammatory effects on endothelial cells. Membranous SEMA4D on neutrophils bound to plexin B2 on endothelial cells, and this interaction decreased NET formation. Recombinant plexin B2 suppressed neutrophil Rac1 activation through SEMA4D’s intracellular domain, and inhibited pathogen-induced or ANCA-induced oxidative burst and NET formation.ConclusionsNeutrophil surface SEMA4D functions as a negative regulator of neutrophil activation. Proteolytic cleavage of SEMA4D as observed in patients with AAV may amplify neutrophil-mediated inflammatory responses. SEMA4D is a promising biomarker and potential therapeutic target for AAV.
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献