Ricci Vector Fields

Author:

Alohali HananORCID,Deshmukh ShariefORCID

Abstract

We introduce a special vector field ω on a Riemannian manifold (Nm, g), such that the Lie derivative of the metric g with respect to ω is equal to ρRic, where Ric is the Ricci curvature of (Nm, g) and ρ is a smooth function on N^{m} and call this vector field a ρ-Ricci vector field. We use ρ-Ricci vector field on a Riemannian manifold (Nm, g) and find two characterizations of m-sphere Sm(α). In first result, we show that an m-dimensional compact and connected Riemannian manifold (Nm, g) with nonzero scalar curvature admits a ρ-Ricci vector field ω such that ρ is nonconstant function and the integral of Ric(ω,ω) has a suitable lower bound is necessary and sufficient for (Nm, g) to be isometric to m-sphere Sm(α). In second result, we show that an m-dimensional complete and simply connected Riemannian manifold (Nm, g) of positive scalar curvature admits a ρ-Ricci vector field ω such that ρ is a nontrivial solution of Fischer-Marsden equation and the squared length of the covariant derivative of ω has an appropriate upper bound, if and only if, (Nm, g) to be isometric to m-sphere Sm(α).

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3