Affiliation:
1. Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2. Department of Mathematics and Informatics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, Romania
Abstract
We continue studying the σ-Ricci vector field u on a Riemannian manifold (Nm,g), which is not necessarily closed. A Riemannian manifold with Ricci operator T, a Coddazi-type tensor, is called a T-manifold. In the first result of this paper, we show that a complete and simply connected T-manifold(Nm,g), m>1, of positive scalar curvature τ, admits a closed σ-Ricci vector field u such that the vector u−∇σ is an eigenvector of T with eigenvalue τm−1, if and only if it is isometric to the m-sphere Sαm. In the second result, we show that if a compact and connected T-manifold(Nm,g), m>2, admits a σ-Ricci vector field u with σ≠0 and is an eigenvector of a rough Laplace operator with the integral of the Ricci curvature Ricu,u that has a suitable lower bound, then (Nm,g) is isometric to the m-sphere Sαm, and the converse also holds. Finally, we show that a compact and connected Riemannian manifold (Nm,g) admits a σ-Ricci vector field u with σ as a nontrivial solution of the static perfect fluid equation, and the integral of the Ricci curvature Ricu,u has a lower bound depending on a positive constant α, if and only if (Nm,g) is isometric to the m-sphere Sαm.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献