On the Potential Vector Fields of Soliton-Type Equations

Author:

Blaga Adara M.1ORCID

Affiliation:

1. Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, B-dul. V. Pârvan 4, 300223 Timişoara, Romania

Abstract

We highlight some properties of a class of distinguished vector fields associated to a (1,1)-tensor field and to an affine connection on a Riemannian manifold, with a special view towards the Ricci vector fields, and we characterize them with respect to statistical, almost Kähler, and locally product structures. In particular, we provide conditions for these vector fields to be closed, Killing, parallel, or semi-torse forming. In the gradient case, we give a characterization of the Euclidean sphere. Among these vector fields, the Ricci and torse-forming-like vector fields are particular cases.

Publisher

MDPI AG

Reference22 articles.

1. On torse-forming direction in a Riemannian space;Yano;Proc. Imp. Acad. Tokyo,1944

2. A link between torse-forming vector fields and rotational hypersurfaces;Chen;Int. J. Geom. Methods Mod. Phys.,2017

3. Some results about concircular vector fields on Riemannian manifolds;Chen;Filomat,2020

4. Torse-forming vector fields on m-spheres;Ishan;AIMS Math.,2022

5. Alohali, H., and Deshmukh, S. (2023). Ricci vector fields. Mathematics, 11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3