Abstract
Global pollution from fossil plastics is one of the top environmental threats of our times. The end-of-life scenarios of fossil plastic, including recycling, incineration and disposal result in mi-croplastic formation, elevated atmospheric CO2 levels, and littering of terrestrial and aquatic environments by plastic waste.
Currently thought-out regulations centered around banning plastics production and use and only recycling on a regional, national and global level are impeding efforts to rapidly replace fossil plastics through the use of natural alternatives. In particular, this review demonstrates how mi-crobial polyhydroxyalkanoates (PHA), a class of intrinsically natural polymers, can easily remedy for the fossil and persistent plastic dilemma. PHA are bio-based, bio-synthesized, bio-compatible, bio-degradable, and home- and industrially compostable. Therefore, they are one of the perfect replacements for our fossil plastics pollution dilemma, providing us with the benefits of fossil plastics and meeting all requirements of a truly circular economy.
PHA biopolyesters are natural and green materials in all aspects of their life cycle. The review elaborates in detail how PHA’s production, consumption, and end-of-life profile are perfectly embedded in the current topical 12 Principles of Green Chemistry, which constitute the basis for sustainable product manufacturing.
It is shown that it is time for a paradigm shift in plastics manufacturing, use and disposal. Hu-mankind needs alternatives to fossil plastics, which, as recalcitrant xenobiotics, contribute to the increasing deterioration of our planet. Natural PHA biopolyesters represent that paradigm shift!