Exploring the Future of Polyhydroxyalkanoate Composites with Organic Fillers: A Review of Challenges and Opportunities

Author:

Thakur Abhishek1ORCID,Musioł Marta1ORCID,Duale Khadar1,Kowalczuk Marek1ORCID

Affiliation:

1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland

Abstract

Biopolymers from renewable materials are promising alternatives to the traditional petroleum-based plastics used today, although they face limitations in terms of performance and processability. Natural fillers have been identified as a strategic route to create sustainable composites, and natural fillers in the form of waste by-products have received particular attention. Consequently, the primary focus of this article is to offer a broad overview of recent breakthroughs in environmentally friendly Polhydroxyalkanoate (PHA) polymers and their composites. PHAs are aliphatic polyesters obtained by bacterial fermentation of sugars and fatty acids and are considered to play a key role in addressing sustainability challenges to replace traditional plastics in various industrial sectors. Moreover, the article examines the potential of biodegradable polymers and polymer composites, with a specific emphasis on natural composite materials, current trends, and future market prospects. Increased environmental concerns are driving discussions on the importance of integrating biodegradable materials with natural fillers in our daily use, emphasizing the need for clear frameworks and economic incentives to support the use of these materials. Finally, it highlights the indispensable need for ongoing research and development efforts to address environmental challenges in the polymer sector, reflecting a growing interest in sustainable materials across all industries.

Funder

European Union’s Horizon 2020 research and innovation program

Minister of Science and Higher Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3