Advancements in Synthetic Biology for Enhancing Cyanobacterial Capabilities in Sustainable Plastic Production: A Green Horizon Perspective

Author:

Nawaz Taufiq1ORCID,Gu Liping1,Hu Zhong2ORCID,Fahad Shah34ORCID,Saud Shah5ORCID,Zhou Ruanbao1ORCID

Affiliation:

1. Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA

2. Department of Mechanical Engineering, J. J. Lohr College of Engineering/Brookings, South Dakota State University, Brookings, SD 57007, USA

3. Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

4. Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 13-5053, Lebanon

5. College of Life Science, Linyi University, Linyi 276000, China

Abstract

This comprehensive review investigates the potential of cyanobacteria, particularly nitrogen-fixing strains, in addressing global challenges pertaining to plastic pollution and carbon emissions. By analyzing the distinctive characteristics of cyanobacteria, including their minimal growth requirements, high photosynthetic efficiency, and rapid growth rates, this study elucidates their crucial role in transforming carbon sequestration, biofuel generation, and biodegradable plastic production. The investigation emphasizes cyanobacteria’s efficiency in photosynthesis, positioning them as optimal candidates for cost-effective bioplastic production with minimized land usage. Furthermore, the study explores their unconventional yet promising utilization in biodiesel production, mitigating environmental concerns such as sulfur emissions and the presence of aromatic hydrocarbons. The resulting biodiesel exhibits significant combustion potential, establishing cyanobacteria as a viable option for sustainable biofuel production. Through a comprehensive assessment of both achievements and challenges encountered during the commercialization process, this review offers valuable insights into the diverse contributions of cyanobacteria. Its objective is to provide guidance to researchers, policymakers, and industries interested in harnessing bio-inspired approaches for structural and sustainable applications, thereby advancing global efforts towards environmentally conscious plastic and biofuel production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3