Author:
Aliansyah Zulhaj,Shimasaki Kohei,Jiang Mingjun,Takaki Takeshi,Ishii Idaku,Yang Hua,Umemoto Chikako,Matsuda Hiroshi, , , , ,
Abstract
This study proposes a novel vision-based measurement method to capture small dynamic displacements at many points on a large-scale structure. The measurement points are aligned in the depth direction so that all points are observable in a single field of view with a high power zoom lens. To cope with insufficient incident light and lens blur when capturing video in a limited depth of field with large magnification, our method used highly retroreflective cubes as markers, combined with a strong coaxial lighting device for measuring image displacements with a tandem-layout in images. We conducted experiments to measure dynamic displacements of a 4 m long truss bridge model, and 18 corner cubes were attached as retroreflective markers. 752×2048 images were captured with a coaxial lighting device at 240 fps. The experimental results show that the deformation of the bridge model, its resonant frequencies, and mode shapes at a frequency of dozens of Hz can be determined by analyzing images captured from a single camera view.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference50 articles.
1. P. C. Chang, A. Flatau, and S. C. Liu, “Review Paper: Health Monitoring of Civil Infrastructure,” Structural Health Monitoring, Vol.2, No.3, pp. 257-267, 2003.
2. C. R. Farrar and K. Worden, “An introduction to structural health monitoring,” Philosophical Trans. of the Royal Society A, Vol.365, No.1851, pp. 303-315, 2007.
3. O. S. Salawu and C. Williams, “Review of full-scale dynamic testing of bridge structures,” Engineering Structures, Vol.17, No.2, pp. 113-121, 1995.
4. P. Paultre, J. Proulx, and M. Talbot, “Dynamic testing procedures for highway bridges using traffic loads,” J. of Structural Engineering, Vol.121, No.2, pp. 362-376, 1995.
5. Q. Qin, H. B. Li, L. Z. Qian, and C.-K. Lau, “Modal Identification of Tsing Ma Bridge by Using Improved Eigensystem Realization Algorithm,” J. of Sound and Vibration, Vol.247, No.2, pp. 325-341, 2001.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献