Author:
Ezaki Yuriko,Moko Yushi,Hayakawa Tomohiko,Ishikawa Masatoshi, ,
Abstract
Efficient imaging is achieved under conditions of high relative velocity between the camera and the subject by using the following imaging system; two galvanometer mirrors are placed vertically in front of the camera, one for motion blur compensation and the other for switching the angle of view. The proposed system can overcome the shortcomings of conventional imaging systems with motion blur compensation, such as a small angle of view, and efficiently acquire high-resolution images. If the angle is changed for each capture while the mirrors are stationary for the exposure time, the natural frequency of the mirrors produces noise, leading to a poor resolution. However, this issue can be managed by generating and using an input that does not contain a natural frequency component. A target moving in one dimension can be captured and it is confirmed that the angle of view was extended from the obtained image. It is expected that the camera will be used for inspections under conditions where the relative speed between the camera and target is high, such as in highway tunnel inspections.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference21 articles.
1. T. Suda, A. Tabata, J. Kawakami, and T. Suzuki, “Development of an impact sound diagnosis system for tunnel concrete lining,” Tunnelling and Underground Space Technology, Vol.19, pp. 328-329, 2004.
2. Z. Aliansyah, K. Shimasaki, M. Jiang, T. Takaki, I. Ishii, H. Yang, C. Umemoto, and H. Matsuda, “A Tandem Marker-Based Motion Capture Method for Dynamic Small Displacement Distribution Analysis,” J. Robot. Mechatron., Vol.31, No.5, pp. 671-685, 2019.
3. R. Haraguchi, K. Osuka, S. Makita, and S. Tadokoro, “The development of the mobile inspection robot for rescue activity, MOIRA2,” Proc. of 2005 12th Int. Conf. on Advanced Robotics (ICAR’05), pp. 498-505, 2005.
4. M. Ikura, L. Miyashita, and M. Ishikawa, “Stabilization System for UAV Landing on Rough Ground by Adaptive 3D Sensing and High-Speed Landing Gear Adjustment,” J. Robot. Mechatron., Vol.33, No.1, pp. 108-118, 2021.
5. M. Morita, H. Kinjo, S. Sato, T. Sulyyon, and T. Anezaki, “Autonomous flight drone for infrastructure (transmission line) inspection (3),” 2017 Int. Conf. on Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp. 198-201, 2017.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献