Autonomous Adaptive Flight Control of a UAV for Practical Bridge Inspection Using Multiple-Camera Image Coupling Method

Author:

Hidaka Kenta, ,Fujimoto Daiki,Sato Kazuya

Abstract

Recently, with the deterioration of bridge facilities, demand has arisen for a method to inspect many bridges efficiently. One proposed bridge inspection method involves observation and inspection of cracks on undersides of bridges using a video camera mounted on an unmanned aerial vehicle (UAV) that flies under the bridges. There is an option to have a pilot operate the UAV, but it is desirable to have the UAV fly autonomously when efficiency of inspection is considered. Though there is a method using GPS for autonomous flight control of UAVs, there are many cases in which GPS cannot be utilized under bridges, and a new method is required for autonomous flight control in such places. The authors have already shown that autonomous flight control of UAVs can be achieved within the range of a monocular camera image by measuring the position of a UAV using camera images. However, since the flight range is bounded by the monocular camera image, it is necessary to move the camera position to fly the UAV autonomously in a wider space. In this paper, it is shown that a UAV can achieve autonomous flight control in wider spaces by constructing a single coordinate system for a combination of two camera images. In addition, considering that various measuring instruments might be mounted on a UAV, an adaptive control method capable of obtaining good control performance without changing the design parameters of the controllers should be applied. This method is useful for maintaining control performance when the total weight of the UAV changes. To show the effectiveness of our proposed method, we give an appropriate practical flight target orbit and present its experimental results.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference9 articles.

1. K. Nonami, “Drone Technology, Cutting-Edge Drone Business, and Future Prospects,” J. Robot. Mechatron., Vol.28, No.3, pp. 262-272, 2016.

2. K. Sato, T. Kasahara, R. Daikoku, and T. Izu, “A Proposal of Autonomous Flight Control Method of Multicopter for the Inspection of Under the Bridge,” Proc. of 16th SICE Symp. on Industrial Application Systems, pp. 22-26, 2015 (in Japanese).

3. K. Sato and R. Daikoku, “A Simple Autonomous Flight Control of Multicopter Using Only Web Camera,” J. Robot. Mechatron., Vol.28, No.3, pp. 286-294, 2016.

4. K. Sato, T. Kasahara, and T. Izu, “A Simple Autonomous Flight Control Method of Quadrotor Helicopter using only single Web Camera,” Proc. of 2016 Int. Conf. on Unmanned Aircraft Systems (ICUAS), pp. 671-678, 2016.

5. I. Fujii and K. Sato, “Formation Control of Multi Robots using Multiple-camera with ROS,” The 59th Japan Automatic Control Conf., FrB6-1, 2016 (in Japanese).

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of User Interfaces for Semi-Automatic Visual Support System Using Drone for Teleoperated Construction Robot;2023 International Symposium on Micro-NanoMehatronics and Human Science (MHS);2023-11-20

2. Performance Improvement of a Calibration-Free Visual Feedback Controller Using Lens Distortion Parameters;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

3. Visual Pursuit with Switched Motion Estimation and Rigid Body Gaussian Processes;Transactions of the Institute of Systems, Control and Information Engineers;2023-09-15

4. Autonomous Navigation System for Multi-Quadrotor Coordination and Human Detection in Search and Rescue;Journal of Robotics and Mechatronics;2023-08-20

5. Sparse Bayesian Approach for Learning Control Barrier Functions and Safe Persistent Coverage Control;Transactions of the Society of Instrument and Control Engineers;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3