High-Frequency Vibration of Leg Masses for Improving Gait Stability of Compass Walking on Slippery Downhill

Author:

Li Longchuan,Asano Fumihiko,Tokuda Isao, ,

Abstract

Towards improving the stability of point-foot biped robot on slippery downhill, a novel and indirect control method is introduced in this paper using active wobbling masses attached to both legs. The whole dynamics which contains walking, sliding and wobbling, can be dominated by high-frequency oscillation via entrainment effect. Stable gaits are therefore achieved by controlling only 1% of the whole system where the original passive dynamic walking fails. First, we derive the equations of dynamics and control for this indirectly controlled biped walking on slippery downhill. Second, we numerically show the possibility of improving the stability with high-frequency oscillation. We also find the main effect of wobbling motion on walking via phase-plane plot. Third, we prove that the range of stable walking with respect to frictional coefficient can be enlarged by employing suitable high-frequency oscillation via parametric study. Our method will be further applied to more general conditions in real tasks which contain different locomotion types, where the whole dynamics could be dominated by high-frequency oscillation and the phase properties of the dynamics will be positively utilized.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference19 articles.

1. T. McGeer, “Passive dynamic walking,” The Int. J. of Robotics Research, Vol.9, No.2, pp. 62-82, 1990.

2. T. Kinugasa and Y. Sugimoto, “Dynamically and Biologically Inspired Legged Locomotion: A Review,” J. Robot Mechatron., Vol.29, No.3, pp. 456-470, 2017.

3. A. Goswami, B. Espiau, and A. Keramane, “Limit cycles and their stability in a passive bipedal gait,” Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), Vol.1, pp. 246-251, Minneapolis, MN, April 1996.

4. F. Asano, Z.-W. Luo, and M. Yamakita, “Biped gait generation and control based on a unified property of passive dynamic walking,” IEEE Trans. on Robotics, Vol.21, No.4, pp. 754-762, 2005.

5. J. E. Pratt and G. A. Pratt, “Exploiting natural dynamics in the control of a planar bipedal walking robot,” Proc. of the 36th Annual Allerton Conf. on Communication, Control, and Computing, pp. 739-748, Monticello, USA, September 1998.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3