MPID Control Tuning for a Flexible Manipulator Using a Neural Network

Author:

Mansour Tamer, ,Konno Atsushi,Uchiyama Masaru

Abstract

This paper studies the use of neural networks as a tuning tool for the gain in Modified Proportional-Integral-Derivative (MPID) control used to control a flexible manipulator. The vibration control gain in the MPID controller has been determined in an empirical way so far. It is a considerable time consuming process because the vibration control performance depends not only on the vibration control gain but also on the other parameters such as the payload, references and PD joint servo gains. Hence, the vibration control gain must be tuned considering the other parameters. In order to find optimal vibration control gain for the MPID controller, a neural network based approach is proposed in this paper. The proposed neural network finds an optimum vibration control gain that minimizes a criteria function. The criteria function is selected to represent the effect of the vibration of the end effector in addition to the speed of response. The scaled conjugate gradient algorithm is used as a learning algorithm for the neural network. Tuned gain response results are compared to results for other types of gains. The effectiveness of using the neural network appears in the reduction of the computational time and the ability to tune the gain with different loading condition.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Self-Tuning PID Control System Based on Control Performance Assessment;Journal of Advanced Computational Intelligence and Intelligent Informatics;2016-03-18

2. Dynamic analysis and intelligent control techniques for flexible manipulators: a review;Advanced Robotics;2013-10-15

3. Neural Network Modeling of a Flexible Manipulator Robot;Computer Information Systems and Industrial Management;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3