Author:
Cao Weihua, ,Hu Xuemin,Wu Min,Yin Wei,
Abstract
A Quasi-Newton iterative method is developed for the calculation of the best achievable PID control performance and the corresponding optimal PID setting based on the control parameters and input-output data. At the basis of the proposed method, a self-tuning PID control system is proposed for the time-variant dynamic process. When controllers performance deteriorates below the general performance, controller parameters are directly adjusted with the Quasi-Newton iterative method. When below the poor performance, it can be indirectly adjusted with the identification of the closed-loop impulse response matrix. A data-driven solution is developed for calculation of the closed-loop impulse response matrix. Based on the acquired state information, system is assessed and adjusted cyclically so that a self-tuning PID control system is finally realized. Simulation results show the practicality and utility of this method.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference15 articles.
1. K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. on Control Systems Technology, Vol.13, No.4, pp. 559-576, 2005.
2. H. K. Dong and J. H. Cho, “Robust tuning of PID controller using bacterial-foraging-based optimization,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.9, No.6, pp. 669-676, 2005.
3. T. Mansour, A. Konno, and M. Uchiyama, “MPID control tuning for a flexible manipulator using a neural network,” J. of Robotics and Mechatronics (JRM), Vol.22, No.1, pp. 82-90, 2010.
4. M. Veronesi and A. Visioli, “Performance assessment and retuning of PID controllers,” Industrial and Engineering Chemistry Research, Vol.48, No.5, pp. 2616-2623, 2009.
5. M. Jelali, “An overview of control performance assessment technology and industrial applications,” Control Engineering Practice, Vol. 14, No.5, pp. 441-466, 2006.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献