Author:
Kazama Keisuke, ,Akagi Yasuhiro,Raksincharoensak Pongsathorn,Mouri Hiroshi
Abstract
[abstFig src='/00280006/11.jpg' width='300' text='Road detection method with HOG and SVM' ] This paper describes a road area detection method using a support vector machine (SVM) and histogram of oriented gradient (HOG) features. The boundary lines have many features, such as changes in height, color, and brightness, but these are sensitive to noise. In terms of robustness, it is difficult to match road boundary lines with the boundary lines on 2D maps. Localization methods using texture matching are accurate, but they have disadvantages related to adapting to changes in the environment. We therefore decided to make a classifier to differentiate road areas from other areas by detecting the road plane. First, we calculate the HOG features from range data acquired by 3D LiDAR. We then create the road area classifier by applying SVM. Finally, we evaluate the basic performance of the proposed method in simulation and in the real world.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献