Visual Navigation Based on Semantic Segmentation Using Only a Monocular Camera as an External Sensor

Author:

Miyamoto Ryusuke,Adachi Miho,Ishida Hiroki,Watanabe Takuto,Matsutani Kouchi,Komatsuzaki Hayato,Sakata Shogo,Yokota Raimu,Kobayashi Shingo, ,

Abstract

The most popular external sensor for robots capable of autonomous movement is 3D LiDAR. However, cameras are typically installed on robots that operate in environments where humans live their daily lives to obtain the same information that is presented to humans, even though autonomous movement itself can be performed using only 3D LiDAR. The number of studies on autonomous movement for robots using only visual sensors is relatively small, but this type of approach is effective at reducing the cost of sensing devices per robot. To reduce the number of external sensors required for autonomous movement, this paper proposes a novel visual navigation scheme using only a monocular camera as an external sensor. The key concept of the proposed scheme is to select a target point in an input image toward which a robot can move based on the results of semantic segmentation, where road following and obstacle avoidance are performed simultaneously. Additionally, a novel scheme called virtual LiDAR is proposed based on the results of semantic segmentation to estimate the orientation of a robot relative to the current path in a traversable area. Experiments conducted during the course of the Tsukuba Challenge 2019 demonstrated that a robot can operate in a real environment containing several obstacles, such as humans and other robots, if correct results of semantic segmentation are provided.

Funder

Meiji University

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3