Author:
Yokozuka Masashi, ,Suzuki Yusuke,Takei Toshinobu,Hashimoto Naohisa,Matsumoto Osamu
Abstract
We propose the robust 2D localization applies an Auxiliary Particle Filter (APF) to Monte Carlo Localization (MCL). Urban environments have fewer landmarks than two-dimensional (2D) indoor maps for efficiently finding a unique location. Localization using MCL have the problem that few landmarks pose divergence of the particles of MCL. We use APF for MCL, because APF continues resampling until convergence particle occurs in one localization step. Another problem with 2D urban mapping is that of data association posed by three-dimensional (3D) surfaces. Pitching and rolling may, for example, adversely affect 2D scan-data metrics due to 3D surfaces, causing mismatching data association in 2D maps. We therefore use a Laplacian filter for 2D grid maps. Experimental results show that our localization method is more highly stable in urban environments than MCL.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference18 articles.
1. Tohoku regional bureau ministry of land, “Implementation of Compact Cities,” report of Tohoku regional bureau ministry of land, 2003. (in Japanese)
2. O. Matsumoto et al., “Autonomous Traveling Control of the “TAO Aicle” Intelligent Wheelchair,” Proc. of. 2006 IEEE/RSJ Int. Conf. on. Intelligent Robots and Systems (IROS06), 2006.
3. F. Dellaert et al., “Monte Carlo Localization for Mobile Robots,” Proc. of. IEEE Int. Conf. Robot. Autom., 1999.
4. A. Howard et al., “Towards 3D Mapping in Large Urban Environments,” Proc. of. 2004 IEEE/RSJ Int. Conf. on. Intelligent Robots and Systems (IROS 04), 2004.
5. D. Borrmann et al., “Globally consistent 3D mapping with scan matching,” J. of Robotics and Autonomous Systems, Vol.56, No.2, pp. 130-142, 2008.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献