Design and Assessment of Sound Source Localization System with a UAV-Embedded Microphone Array

Author:

Hoshiba Kotaro, ,Sugiyama Osamu,Nagamine Akihide,Kojima Ryosuke,Kumon Makoto,Nakadai Kazuhiro, , , , ,

Abstract

[abstFig src='/00290001/15.jpg' width='300' text='Visualization of localization result' ] We have studied on robot-audition-based sound source localization using a microphone array embedded on a UAV (unmanned aerial vehicle) to locate people who need assistance in a disaster-stricken area. A localization method with high robustness against noise and a small calculation cost have been proposed to solve a problem specific to the outdoor sound environment. In this paper, the proposed method is extended for practical use, a system based on the method is designed and implemented, and results of sound source localization conducted in the actual outdoor environment are shown. First, a 2.5-dimensional sound source localization method, which is a two-dimensional sound source localization plus distance estimation, is proposed. Then, the offline sound source localization system is structured using the proposed method, and the accuracy of the localization results is evaluated and discussed. As a result, the usability of the proposed extended method and newly developed three-dimensional visualization tool is confirmed, and a change in the detection accuracy for different types or distances of the sound source is found. Next, the sound source localization is conducted in real-time by extending the offline system to online to ensure that the detection performance of the offline system is kept in the online system. Moreover, the relationship between the parameters and detection accuracy is evaluated to localize only a target sound source. As a result, indices to determine an appropriate threshold are obtained and localization of a target sound source is realized at a designated accuracy.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3