A Performance Assessment on Rotor Noise-Informed Active Multidrone Sound Source Tracking Methods

Author:

Yen Benjamin1ORCID,Yamada Taiki1ORCID,Itoyama Katsutoshi2ORCID,Nakadai Kazuhiro1ORCID

Affiliation:

1. Department of Systems and Control Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

2. Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako, Saitama 351-0188, Japan

Abstract

This study evaluates and assesses the performance of recent developments in sound source tracking using microphone arrays from multiple drones. Stemming from a baseline study, which triangulates the spatial spectrum calculated from the MUltiple SIgnal Classification (MUSIC) for each drone, otherwise known as Particle Filtering with MUSIC (PAFIM), recent studies extended the method by introducing methods to improve the method’s effectiveness. This includes a method to optimise the placement of the drone while tracking the sound source and methods to reduce the influence of high levels of drone rotor noise in the audio recordings. This study evaluates each of the recently proposed methods under a detailed set of simulation settings that are more challenging and realistic than those from previous studies and progressively evaluates each component of the extensions. Results show that applying the rotor noise reduction method and array placement planning algorithm improves tracking accuracy significantly. However, under more realistic input conditions and representations of the problem setting, these methods struggle to achieve decent performance due to factors not considered in their respective studies. As such, based on the performance assessment results, this study summarises a list of recommendations to resolve these shortcomings, with the prospect of further developments or modifications to PAFIM for improved robustness against more realistic settings.

Funder

Japan Society for the Promotion of Science

Fukushima institute for Research, Education and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3