Proposal of Estimation Method for Debris Flow Potential Considering Eruptive Activity

Author:

Iguchi Masato,

Abstract

An estimation method for debris flow potential is proposed to evaluate the possibility of the occurrence of rain-triggered debris flows. Sakurajima volcano has repeatedly erupted (Vulcanian type) and has continuously emitted volcanic ash at the Minamidake summit crater or Showa crater east of the summit since 1955, and debris flows have frequently occurred at rates of 10 to 111 events per year. Ground deformation associated with debris flows along the Arimura River were analyzed for the period from 2009 to 2016. Downward tilt (10–450 nrad) in the direction of the river and extensional strain (3–138 nstrain) were detected during occurrence of the debris flows. The tilt and strain changes were modeled using a point load caused by debris flow deposition beside a sabo dam. Depositional weights of individual debris flow events were estimated to range from 6 to 276 kt. The total weight of the debris flows was 2,154 kt, which is approximately 5% of the total weight of volcanic ash ejected from the craters during the study period. Debris flow potential (DFP) was defined as the difference in the volcanic ash deposits along the upper stream of the river (5% of the total) and the lower stream of the river, and the temporal change of the debris flow potential was investigated. When the debris flow potential reached a level of 0.4 Mt resulting from an increase in eruptive activity, debris flows frequently occurred or large debris flows were induced during rainy seasons. The concept of debris flow potential was applied to volcanoes in Indonesia as lahar potential. After the 2010 eruption at Merapi volcano, lahar potential, perhaps, quasi-exponentially decays during the dormant period. The lahar potential of Sinabung volcano complicatedly varies because of long-term eruptivity beginning in 2014.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3