Abstract
An estimation method for debris flow potential is proposed to evaluate the possibility of the occurrence of rain-triggered debris flows. Sakurajima volcano has repeatedly erupted (Vulcanian type) and has continuously emitted volcanic ash at the Minamidake summit crater or Showa crater east of the summit since 1955, and debris flows have frequently occurred at rates of 10 to 111 events per year. Ground deformation associated with debris flows along the Arimura River were analyzed for the period from 2009 to 2016. Downward tilt (10–450 nrad) in the direction of the river and extensional strain (3–138 nstrain) were detected during occurrence of the debris flows. The tilt and strain changes were modeled using a point load caused by debris flow deposition beside a sabo dam. Depositional weights of individual debris flow events were estimated to range from 6 to 276 kt. The total weight of the debris flows was 2,154 kt, which is approximately 5% of the total weight of volcanic ash ejected from the craters during the study period. Debris flow potential (DFP) was defined as the difference in the volcanic ash deposits along the upper stream of the river (5% of the total) and the lower stream of the river, and the temporal change of the debris flow potential was investigated. When the debris flow potential reached a level of 0.4 Mt resulting from an increase in eruptive activity, debris flows frequently occurred or large debris flows were induced during rainy seasons. The concept of debris flow potential was applied to volcanoes in Indonesia as lahar potential. After the 2010 eruption at Merapi volcano, lahar potential, perhaps, quasi-exponentially decays during the dormant period. The lahar potential of Sinabung volcano complicatedly varies because of long-term eruptivity beginning in 2014.
Publisher
Fuji Technology Press Ltd.
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality
Reference21 articles.
1. M. Iguchi, “Method for real-time evaluation of discharge rate of volcanic ash – case study on intermittent eruptions at the Sakurajima volcano, Japan –,” J. Disaster Res., Vol.11, No.1, pp. 4-14, 2016.
2. B. Walsh, A. D. Jolly, and J. N. Procter, “Seismic analysis of the 13 October 2012 Te Maari, New Zealand, lake breakout lahar: Insights into flow dynamics and the implications on mass flow monitoring,” J. Volcanol. Geotherm. Res., Vol.324, pp. 144-155, 2016.
3. K. Kumagai et al., “Seismic tracking of lahars using tremor signals,” J. Volcanol. Geotherm. Res., Vol.183, pp. 112-121, 2009.
4. A. Ratdomopurbo, “Overview of the 2006 eruption of Mt. Merapi,” J. Volcanol. Geotherm. Res., Vol.261, pp. 87-97, 2013.
5. T. Mizuyama and S. Uehara, “Observed data of the depth and velocity of debris flow,” J. Japan Society of Erosion Control Engineering, Vol.37, pp. 23-26, 1984 (in Japanese).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献