Integrated Study on Forecasting Volcanic Hazards of Sakurajima Volcano, Japan

Author:

Iguchi Masato, ,Nakamichi Haruhisa,Tameguri Takeshi

Abstract

Several types of eruptions have occurred at Sakurajima volcano in the past 100 years. The eruption in 1914 was of a Plinian type followed by an effusion of lava. The progression of seismicity of volcanic earthquakes prior to the eruption is reexamined and seismic energy is estimated to be an order of 1014 J. Lava also effused from the Showa crater in 1946. Since 1955, eruptions frequently have occurred at the Minamidake or Showa craters at the summit area. Vulcanian eruptions are a well-known type of summit eruption of Sakurajima, however Strombolian type eruptions and continuous ash emissions have also occurred at the Minamidake crater. The occurrence rate of pyroclastic flows significantly increased during the eruptivity of Showa crater, with the occurrence of lava fountains. Tilt and strain observations are reliable tools to forecast the eruptions, and their combination with the seismicity of volcanic earthquakes is applicable to forecasting the occurrence of pyroclastic flows. An empirical event branch logic based on magma intrusion rate is proposed to forecast the scale and type of eruption. Forecasting the scale of an eruption and real-time estimations of the discharge rate of volcanic ash allows us to assess ash fall deposition around the volcano. Volcanic ash estimation is confirmed by an integrated monitoring system of X Band Multi-Parameter radars, lidar and the Global Navigation Satellite System to detect volcanic ash particles with different wave lengths. Evaluation of the imminence of eruptions and forecasting of their scale are used for the improvement of planning and drilling of volcanic disaster measures.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

Reference79 articles.

1. M. Okuno, “Chronology of tephra layers in southern Kyushu, SW Japan, for the last 30,000 years,” The Quaternary Research, Vol.41, No.2, pp. 225-236, 2002 (in Japanese with English abstract).

2. K. Mogi, “Relation between the eruptions of various volcanoes and the deformations of the ground surface around them,” Bull. Earthq. Res. Inst., Univ. Tokyo, Vol.36, pp. 99-134, 1958.

3. K. Sassa, “A few problems on prediction of earthquake (II),” Proc. of the 5th Anniversary of Founding of Disast. Prev. Res. Inst. Kyoto Univ., pp. 3-7, 1956 (in Japanese).

4. K. Yamamoto et al., “Vertical ground deformation in Sakurajima volcano and around Aira caldera measured by precise leveling survey conducted in October and November 2013,” M. Iguchi (Eds.), “Report on Integrated volcano observation for the study on preparation process of eruption at Sakurajima volcano 2013,” pp. 53-61, 2014 (in Japanese with English abstract).

5. M. Ishimura, “Change of agriculture in Sakurajima by ash fall,” J. Geography (Chigaku Zasshi), Vol.94, No.4, pp. 256-265, 1985 (in Japanese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3