Object-Based Building Damage Assessment Methodology Using Only Post Event ALOS-2/PALSAR-2 Dual Polarimetric SAR Intensity Images

Author:

Bai Yanbing, ,Adriano Bruno,Mas Erick,Gokon Hideomi,Koshimura Shunichi, ,

Abstract

Earthquake-induced building damage assessment is an indispensable prerequisite for disaster impact assessment, and the increasing availability of high-resolution Synthetic Aperture Radar (SAR) imagery has made it possible to construct damaged building inventories soon after earthquakes strike. However, the shortage of pre-seismic SAR datasets and the lack of available building footprint data pose challenges for rapid building damage assessment. Taking advantage of recent advances in machine learning algorithms, this study proposes an object-based building damage assessment methodology that uses only post-event SAR imagery. A Random Forest machine learning-based object classification, a simplified approach to the extraction of built-up areas, was developed and tested on two ALOS2/PALSAR-2 dual polarimetric SAR images acquired in affected areas soon after the 2015 Nepal earthquake. In addition, a series of texture metrics as well as the random scattering metric and reflection symmetry metric were found to significantly enhance classification accuracy. The feature selection was found to have a positive effect on overall performance. Moreover, the proposed Random Forest framework resulted in overall accuracies of 93% with a kappa coefficient of 0.885 when the object scale of 60 × 60 pixels and 15 features were adopted. A comparative experiment with the k-nearest neighbor framework demonstrated that the Random Forest framework is a significant step toward the achievement of a balanced, two-class classification.

Publisher

Fuji Technology Press Ltd.

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3