Rapid Assessment of Building Damage Using Multi-Source Data: A Case Study of April 2015 Nepal Earthquake

Author:

Chen JinORCID,Tang HongORCID,Ge Jiayi,Pan YaozhongORCID

Abstract

It is of great significance for emergency rescue to rapidly assess damage of buildings after an earthquake. Some previous methods are time-consuming, data are difficult to obtain, or there is lack of regional damage assessment. We proposed a novel way to rapidly assess building damage by comprehensively utilizing earth observation-derived data and field investigation to alleviate the above problems. These data are related to hazard-causing factors, hazard-formative environment, and hazard-affected body. Specifically, predicted ground motion parameters are used to reflect hazard-causing factors, e.g., peak ground velocity (PGV), peak ground acceleration (PGA), and pseudo-spectral acceleration (PSA). The hazard-formative environment is denoted by the underground 30 m shear wave velocity. Vulnerability of buildings is reflected by their structure type, age, and height. We take the April 2015 Nepal earthquake as a case study, and building damage data interpreted from satellite images are used to validate the effectiveness of the proposed method. Based on the gradient boosting machine, this paper rapidly assesses building damage from two different spatial levels, i.e., pixel and microzone, and obtains the potentially affected position and regional damage rate. Compared with the method of fragility function, the machine learning method provide a better estimation of the building damage rate. Compared with the assessment method based on remote sensing image, the method in this paper is very efficient since spatial distribution of hazard-causing factors, e.g., PGA, can be quickly predicted shortly after an earthquake. The comparison of experiment with and without vulnerability data of buildings shows that data on the vulnerability of buildings are very important to improve the assessment accuracy of building damage.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3