Adaptive Gait for Large Rough Terrain of a Leg-Wheel Robot (Third Report: Step-Down Gait)

Author:

Nakajima Shuro, ,Nakano Eiji

Abstract

A leg-wheel robot has mechanically separated four legs and two wheels, and it performs high mobility and stability on rough terrains. The adaptive gait for large rough terrains of the leg-wheel robot is composed of three gait strategies. In this paper, the step-down gait, which is one part of the adaptive gait, is described. The point of the flow of the step-down gait is described. When the robot approaches a downward step, a forefoot touches the surface deeply. It forecasts the existence of the downward step by the information on the forefoot's touch point. After that, the robot does the step edge searching operation. This searching operation is the point for going down the step, since the robot fell under the step if it has walked without knowing the step. When the body goes down the step a little, the load sharing ratio of legs increases so that the load of the body rests upon legs. Therefore, the robot finds the edge of it, and it changes footsteps for preparation of going down the step. After the preparation, it can lower the body from the step supported by all legs and wheels. To lower the body, the following items are needed similar to the case of an upward step: 1. Acquisition of target value of lowering the body. 2. Correspondence to difference between target depth and actual depth. This paper is the full translation from the transactions of JSME Vol.72, No.721.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3