Origami Folding by a Robotic Hand

Author:

Tanaka Kenta, ,Kamotani Yusuke,Yokokohji Yasuyoshi

Abstract

Dexterous manipulation by a robotic hand is a difficult problem involving (1) how to design a robot that gives the capability to achieve the task and (2) how to control the designed robot to actually conduct the task. In this paper, we take a task-oriented approach called “task capture” to construct a dexterous robot hand system. Before designing the robot, we analyze how a human being conducts the task, focusing on how the target object is manipulated rather than trying to imitate human finger movement. Based on the captured task, we design a robot that manipulates an object in the same way as a human being may do, with a mechanism as simple as possible, rather than concerning human appearance. As a target task, we choose origami paper folding. We first analyze the difficulty of origami manipulation and design a robotic mechanism that folds an origami form, the Tadpole, based on the proposed approach. The proof of how well the “task capture” approach works is demonstrated by a simple robot we developed, which folds a Tadpole consecutively.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference16 articles.

1. T. McGeer, “Passive dynamic walking,” The Int. J. of Robotics Research, Vol.9, No.2, pp. 62-82, 1990.

2. A. Goswami, B. Thuilot, and B. Espiau, “A study of the passive gait of a compass-like biped robot: Symmetry and chaos,” The Int. J. of Robotics Research, Vol.17, No.12, pp. 1282-1301, 1998.

3. M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, “The simplest walking model: Stability, complexity and scaling,” ASME J. of Biomechanical Engineering, Vol.120, No.2, pp. 281-288, 1998.

4. A. Goswami, B. Thuilot, and B. Espau, “Compass-like biped robot part i: Stability and bifurcation of passive ga its,” Technical Report 2996 INRIA, 1996.

5. Y. Sugimoto and K. Osuka, “Walking control of quasi-passive-dynamic-walking robot quartet iii based on delayed feedback control,” Proc. of the 5th Int. Conf. on Climbing and Walking Robots (CLAWAR), pp. 123-130, 2002.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3