Evolutionary Learning Acquisition of Optimal Joint Angle Trajectories of Flexible Robot Arm

Author:

Kojima Hiroyuki, ,Hiruma Takahiro

Abstract

This paper proposes the evolutionary learning acquisition method of the optimal joint angle trajectories of a flexible robot arm using the genetic algorithm is proposed, and the effects of the optimal joint angle trajectories obtained by the present evolutionary learning acquisition method on the residual vibration reduction are ascertained numerically and experimentally. In the construction of the evolutionary learning acquisition algorithm of the optimal joint angle trajectories, the joint angular velocity curves are depicted with fifth-order polynomials, and, by considering the boundary and constraint conditions, they are expressed by four parameters. Then, the residual vibrations of the flexible robot arm are expressed as a function of the chromosome consisting of four parameters, namely, four genes, and a fitness function of the genetic algorithm for the residual vibration reduction is defined. Furthermore, the numerical calculations have been carried out, and it is confirmed that the residual vibrations almost disappear. Moreover, the experimental results are demonstrated, and the usefulness of the present evolutionary learning acquisition method of the optimal joint angle trajectories of the flexible robot arm using the genetic algorithm is ascertained experimentally.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3